60 research outputs found

    On Optimal Partitioning For Sparse Matrices In Variable Block Row Format

    Full text link
    The Variable Block Row (VBR) format is an influential blocked sparse matrix format designed to represent shared sparsity structure between adjacent rows and columns. VBR consists of groups of adjacent rows and columns, storing the resulting blocks that contain nonzeros in a dense format. This reduces the memory footprint and enables optimizations such as register blocking and instruction-level parallelism. Existing approaches use heuristics to determine which rows and columns should be grouped together. We adapt and optimize a dynamic programming algorithm for sequential hypergraph partitioning to produce a linear time algorithm which can determine the optimal partition of rows under an expressive cost model, assuming the column partition remains fixed. Furthermore, we show that the problem of determining an optimal partition for the rows and columns simultaneously is NP-Hard under a simple linear cost model. To evaluate our algorithm empirically against existing heuristics, we introduce the 1D-VBR format, a specialization of VBR format where columns are left ungrouped. We evaluate our algorithms on all 1626 real-valued matrices in the SuiteSparse Matrix Collection. When asked to minimize an empirically derived cost model for a sparse matrix-vector multiplication kernel, our algorithm produced partitions whose 1D-VBR realizations achieve a speedup of at least 1.18 over an unblocked kernel on 25% of the matrices, and a speedup of at least 1.59 on 12.5% of the matrices. The 1D-VBR representation produced by our algorithm had faster SpMVs than the 1D-VBR representations produced by any existing heuristics on 87.8% of the test matrices

    A Parallel Solver for Graph Laplacians

    Full text link
    Problems from graph drawing, spectral clustering, network flow and graph partitioning can all be expressed in terms of graph Laplacian matrices. There are a variety of practical approaches to solving these problems in serial. However, as problem sizes increase and single core speeds stagnate, parallelism is essential to solve such problems quickly. We present an unsmoothed aggregation multigrid method for solving graph Laplacians in a distributed memory setting. We introduce new parallel aggregation and low degree elimination algorithms targeted specifically at irregular degree graphs. These algorithms are expressed in terms of sparse matrix-vector products using generalized sum and product operations. This formulation is amenable to linear algebra using arbitrary distributions and allows us to operate on a 2D sparse matrix distribution, which is necessary for parallel scalability. Our solver outperforms the natural parallel extension of the current state of the art in an algorithmic comparison. We demonstrate scalability to 576 processes and graphs with up to 1.7 billion edges.Comment: PASC '18, Code: https://github.com/ligmg/ligm

    Jet: Multilevel Graph Partitioning on GPUs

    Full text link
    The multilevel heuristic is the dominant strategy for high-quality sequential and parallel graph partitioning. Partition refinement is a key step of multilevel graph partitioning. In this work, we present Jet, a new parallel algorithm for partition refinement specifically designed for Graphics Processing Units (GPUs). We combine Jet with GPU-aware coarsening to develop a kk-way graph partitioner. The new partitioner achieves superior quality when compared to state-of-the-art shared memory graph partitioners on a large collection of test graphs.Comment: Submitted as a non-archival track paper for SIAM ACDA 202
    • …
    corecore